Python 教程

Python 教程 Python 简介 Python 历史 Python 下载安装 Python 入门 Python 语法 Python 注释 Python 变量 Python 数据类型 Python 数值类型 Python 类型转换 Python 字符串 Python 布尔值 Python 运算符 Python 列表 Python 元组 Python 集合 Python 字典 Python If...Else Python While 循环 Python For 循环 Python 函数 Python Lambda Python 数组 Python 类和对象 Python 继承 Python 迭代 Python 作用域 Python 模块 Python 日期时间 Python 数学运算 Python JSON Python 正则表达式 Python PIP Python Try...Except Python 用户输入 Python 字符串格式化

Python 文件处理

Python 文件处理 Python 打开文件 Python 创建/写入文件 Python 删除文件

Python NumPy

NumPy 简介 NumPy 入门 NumPy 创建数组 NumPy 数组索引 NumPy 数组裁切 NumPy 数据类型 NumPy 副本 vs 视图 NumPy 数组形状 NumPy 数组重塑 NumPy 数组迭代 NumPy 数组连接 NumPy 数组拆分 NumPy 数组搜索 NumPy 数组排序 NumPy 数组过滤 NumPy 随机数 NumPy ufunc 通用函数

Python SciPy

SciPy 简介 SciPy 入门 SciPy 常量 SciPy 优化器 SciPy 稀疏数据 SciPy 图表 SciPy 空间数据 SciPy Matlab 数组 SciPy 插值 SciPy 统计显着性检验

Python 机器学习

Machine 机器学习入门 Machine 平均中位数模式 Machine 标准差 Machine 百分位数 Machine 数据分布 Machine 正态数据分布 Machine 散点图 Machine 线性回归 Machine 多项式回归 Machine 多元回归 Machine 缩放 Machine 训练/测试 Machine 决策树

Python MySQL

MySQL 入门 MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB 入门 MongoDB 创建数据库 MongoDB 创建集合 MongoDB 插入 MongoDB 查找 MongoDB 查询 MongoDB 排序 MongoDB 删除 MongoDB 删除集合 MongoDB 更新 MongoDB 限制

Python 参考手册

Python 参考手册 Python 内置函数 Python 字符串方法 Python 列表/数组方法 Python 字典方法 Python 元组方法 Python 集合方法 Python 文件方法 Python 关键字 Python 内置异常 Python 词汇表

Python 模块参考

Python 随机模块 Python 请求模块 Python 统计模块 Python 数学模块 Python cMath模块

Python 如何使用

Python 删除列表重复项 Python 反转字符串 Python 添加两个数字

Python 高级教程

Python 常用指引 将Python2代码迁移到Python3 将扩展模块移植到 Python3 Curses 编程 描述器使用指南 函数式编程指引 日志常用指引 日志操作手册 正则表达式使用指南 套接字编程指南 排序指南 Unicode 指南 如何利用urllib包获取网络资源 Argparse 教程 ipaddress 模块介绍 Argument Clinic 的用法 使用DTrace和SystemTap检测CPython 对象注解属性的最佳实践

Python 实例

Python 实例 Python 编译器 Python 练习 Python 测验 NumPy 测验 SciPy 测验


机器学习 - 决策树


决策树(Decision Tree)

在本章中,我们将向您展示如何制作"决策树"。决策树是一种流程图,可以帮助您根据以前的经验进行决策。

在这个例子中,一个人将尝试决定他/她是否应该参加喜剧节目。

幸运的是,我们的例中人物每次在镇上举办喜剧节目时都进行注册,并注册一些关于喜剧演员的信息,并且还登记了他/她是否去过。

Age Experience Rank Nationality Go
36 10 9 UK NO
42 12 4 USA NO
23 4 6 N NO
52 4 4 USA NO
43 21 8 USA YES
44 14 5 UK NO
66 3 7 N YES
35 14 9 UK YES
52 13 7 N YES
35 5 9 N YES
24 3 5 USA NO
18 3 7 UK YES
45 9 9 UK YES

现在,基于此数据集,Python 可以创建决策树,这个决策树可用于决定是否值得参加任何新的演出。


工作原理

首先,导入所需的模块,并使用 pandas 读取数据集:

实例

读取并打印数据集:

import pandas
from sklearn import tree
import pydotplus
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
import matplotlib.image as pltimg

df = pandas.read_csv("shows.csv")

print(df)

运行实例 »

如需制作决策树,所有数据都必须是数字。

我们必须将非数字列 "Nationality" 和 "Go" 转换为数值。

Pandas 有一个 map() 方法,该方法接受字典,其中包含有关如何转换值的信息。

{'UK': 0, 'USA': 1, 'N': 2}

表示将值 'UK' 转换为 0,将 'USA' 转换为 1,将 'N' 转换为 2。

实例

将字符串值更改为数值:

d = {'UK': 0, 'USA': 1, 'N': 2}
df['Nationality'] = df['Nationality'].map(d)
d = {'YES': 1, 'NO': 0}
df['Go'] = df['Go'].map(d)

print(df)

运行实例 »

然后,我们必须将特征列与目标列分开。

特征列是我们尝试从中预测的列,目标列是具有我们尝试预测的值的列。

实例

X is the feature columns, y is the target column:

features = ['Age', 'Experience', 'Rank', 'Nationality']

X = df[features]
y = df['Go']

print(X)
print(y)

运行实例 »

现在,我们可以创建实际的决策树,使其适合我们的细节,然后在计算机上保存一个 .png 文件:

实例

创建一个决策树,将其另存为图像,然后显示该图像:

dtree = DecisionTreeClassifier()
dtree = dtree.fit(X, y)
data = tree.export_graphviz(dtree, out_file=None, feature_names=features)
graph = pydotplus.graph_from_dot_data(data)
graph.write_png('mydecisiontree.png')

img=pltimg.imread('mydecisiontree.png')
imgplot = plt.imshow(img)
plt.show()

运行实例 »


结果解释

决策树使用您先前的决策来计算您是否愿意去看喜剧演员的几率。

让我们阅读决策树的不同方面:

Rank

Rank <= 6.5 表示排名在 6.5 以下的喜剧演员将遵循 True 箭头(向左),其余的则遵循 False 箭头(向右)。

gini = 0.497 表示分割的质量,并且始终是 0.0 到 0.5 之间的数字,其中 0.0 表示所有样本均得到相同的结果,而 0.5 表示分割完全在中间进行。

samples = 13 表示在决策的这一点上还剩下 13 位喜剧演员,因为这是第一步,所以他们全部都是喜剧演员。

value = [6, 7] 表示在这 13 位喜剧演员中,有 6 位将获得 "NO",而 7 位将获得 "GO"。

Gini

分割样本的方法有很多,我们在本教程中使用 GINI 方法。

基尼方法使用以下公式:

Gini = 1 - (x/n)2 - (y/n)2

其中,x 是肯定答案的数量 ("GO"),n 是样本数量,y 是否定答案的数量 ("NO"),使用以下公式进行计算:

1 - (7 / 13)2 - (6 / 13)2 = 0.497

下一步包含两个框,其中一个框用于喜剧演员,其 'Rank' 为 6.5 或更低,其余为一个框。

True - 5 名喜剧演员在这里结束:

gini = 0.0 表示所有样本均得到相同的结果。

samples = 5 表示该分支中还剩下 5 位喜剧演员(5 位的等级为 6.5 或更低的喜剧演员)。

value = [5, 0] 表示 5 得到 "NO" 而 0 得到 "GO"。

False - 8 位戏剧演员继续:

Nationality(国籍)

Nationality <= 0.5 表示国籍值小于 0.5 的喜剧演员将遵循左箭头(这表示来自英国的所有人),其余的将遵循右箭头。

gini = 0.219 意味着大约 22% 的样本将朝一个方向移动。

samples = 8 表示该分支中还剩下 8 个喜剧演员(8 个喜剧演员的等级高于 6.5)。

value = [1, 7] 表示在这 8 位喜剧演员中,1 位将获得 "NO",而 7 位将获得 "GO"。




True - 4 名戏剧演员继续:

Age

Age <= 35.5 表示年龄在 35.5 岁或以下的喜剧演员将遵循左箭头,其余的将遵循右箭头。

gini = 0.375 意味着大约 37.5% 的样本将朝一个方向移动。

samples = 4 表示该分支中还剩下 4 位喜剧演员(来自英国的 4 位喜剧演员)。

value = [1, 3] 表示在这 4 位喜剧演员中,1 位将获得 "NO",而 3 位将获得 "GO"。

False - 4 名喜剧演员到这里结束:

gini = 0.0 表示所有样本都得到相同的结果。

samples = 4 表示该分支中还剩下 4 位喜剧演员(来自英国的 4 位喜剧演员)。

value = [0, 4] 表示在这 4 位喜剧演员中,0 将获得 "NO",而 4 将获得 "GO"。




True - 2 名喜剧演员在这里结束:

gini = 0.0 表示所有样本都得到相同的结果。

samples = 2 表示该分支中还剩下 2 名喜剧演员(2 名 35.5 岁或更年轻的喜剧演员)。

value = [0, 2] 表示在这 2 位喜剧演员中,0 将获得 "NO",而 2 将获得 "GO"。

False - 2 名戏剧演员继续:

Experience(经验)

Experience <= 9.5 表示具有 9.5 年或以上经验的喜剧演员将遵循左侧的箭头,其余的将遵循右侧的箭头。

gini = 0.5 表示 50% 的样本将朝一个方向移动。

samples = 2 表示此分支中还剩下 2 个喜剧演员(2 个年龄超过 35.5 的喜剧演员)。

value = [1, 1] 表示这两个喜剧演员中,1 将获得 "NO",而 1 将获得 "GO"。




True - 1 名喜剧演员在这里结束:

gini = 0.0 表示所有样本都得到相同的结果。

samples = 1 表示此分支中还剩下 1 名喜剧演员(1 名具有 9.5 年或以下经验的喜剧演员)。

value = [0, 1] 表示 0 表示 "NO",1 表示 "GO"。

False - 1 名喜剧演员到这里为止:

gini = 0.0 表示所有样本都得到相同的结果。

samples = 1 表示此分支中还剩下 1 位喜剧演员(其中 1 位具有超过 9.5 年经验的喜剧演员)。

value = [1, 0] 表示 1 表示 "NO",0 表示 "GO"。


预测值

我们可以使用决策树来预测新值。

例如:我是否应该去看一个由 40 岁的美国喜剧演员主演的节目,该喜剧演员有 10 年的经验,喜剧排名为 7?

实例

使用 predict() 方法来预测新值:

print(dtree.predict([[40, 10, 7, 1]]))

运行实例 »

实例

如果喜剧等级为 6,答案是什么?

print(dtree.predict([[40, 10, 6, 1]]))

运行实例 »


不同的结果

如果运行足够多次,即使您输入的数据相同,决策树也会为您提供不同的结果。

这是因为决策树无法给我们 100% 的肯定答案。它基于结果的可能性,答案会有所不同。